Controllability and Observability of Large Flexible Spacecraft in Noncircular Orbits

J.-N. Juang*
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.

Introduction

The influence of noncircular orbits on flexible spacecraft flight control has received little attention in the technical literature. Such problems arise in the case of gravity-gradient or spin-stabilized spacecraft, moving in noncircular orbits, with very flexible appendages that are not aligned with the spacecraft principal axes. For noncircular orbits, there are some special problems with disturbances such as gravity gradient, solar pressure, atmospheric drag, etc. The design and ultimate development of these spacecraft require extensive analytical and experimental studies of their dynamics and control. The most important and difficult problems are the analysis of the dynamic response, the controllability and observability of the system, and then the determination of stability characteristics.

Of special interest here is the determination of the controllability and observability of large spacecraft structure. The physical system undergoing analysis may be described by a nontopological tree configuration. The total response of the dynamic system is then considered to be in a nominal trajectory with perturbed motion with respect to the nominal trajectory. Furthermore, if the system is reducible in the sense of Lyapunov's definition, some Lyapunov transformation will bring the variational equation relative to the nominal trajectory to a simple form associated with a time-invariant matrix. The controllability, observability, and stability characteristics are then determined.

Governing Equation of Motion and Its Transformation

The equations of motion for a dynamical system which can be discretized in terms of the generalized coordinate q have the form $\ddot{q} = f(q, u, t)$, where u represents a set of control inputs. For an autonomous system, $\dot{q} = Q(q, u)$ and, taking the separate components, we get equations of the form

$$q_i = Q(q, u_i, t),$$

where c_1, \ldots, c_n and d_1, \ldots, d_n are, respectively, the initial conditions of q_1, \ldots, q_n and u_1, \ldots, u_n at $t = t_0$, and q_0 is obviously a corresponding nominal trajectory. Since many problems are intractable, in the sense that we cannot determine the function Φ explicitly, it is important to consider the characteristics in the neighborhood of a known characteristic. The situation is that we know the value of q^0 and u^0 for a particular value of the initial point c and d, but we do not know the functions Φ for any range of values c and d. We then attempt to approximately determine and finally control the characteristic in the neighborhood of the known q^0 and u^0.

Let us denote the neighboring characteristic by $q^0 + \xi$ and $u = u^0 + u^\prime$. Thus the displacement ξ from the undisturbed characteristic is such that variables ξ satisfy the equation

$$\dot{\xi} = \Psi(t) \xi + Bu,$$

where

$$\Psi(t) = \frac{\partial Q}{\partial q} \bigg|_{q = q^0, u = u^0} (i, j = 1, 2, \ldots, n),$$

and

$$B = \frac{\partial Q}{\partial u} \bigg|_{q = q^0, u = u^0} (k = 1, 2, \ldots, p).$$

If we expand it by a Taylor series and retain only terms of the first order in ξ, we obtain the linear approximation

$$\dot{\xi} = \Gamma(t) \xi + Bu^\prime,$$

where

$$\Gamma = \frac{\partial Q}{\partial q} \bigg|_{q = q^0, u = u^0} (i, j = 1, 2, \ldots, n),$$

and

$$B = \frac{\partial Q}{\partial u} \bigg|_{q = q^0, u = u^0} (k = 1, 2, \ldots, p).$$

Among the systems of linear differential equations of the first order, the simplest and best known are those with constant coefficients. It is therefore of interest to study systems that can be carried by a transformation into systems with constant coefficients. Lyapunov has called such systems reducible with the Lyapunov transformation (see Ref. 2).

If the system is reducible, then some Lyapunov transformation

$$\xi = L(t)x$$

can carry the variational equation (4) into a system

$$\dot{x} = Jx + L^{-1}Bu^\prime,$$

where

$$J = L^{-1}TL^{-1}L,$$

is a constant Jordan matrix with real characteristic values. Note that every system with periodic coefficients is reducible.2

*Member of the Technical Staff, Control and Energy Division; formerly with Martin Marietta Corp., Denver, Colo. Member AIAA.

Controllability and Observability for the Reducible System

In many problems of theoretical nature and also in practical instrumentation design, it is of great interest to determine the controllability and observability of a system if its time-varying dynamic equations are transformed into their Jordan form [Eq. (6)] associated with constant eigenvalues. Based on the properties of the Lyapunov transformation [Eq. (5)] and the simple Jordan form [Eq. (6)], the necessary and sufficient criterion of the controllability and observability for the reducible system will be shown.

We consider the following linear autonomous \(n \)-vector control system:

\[
\dot{x} = Ax + B(t)u\quad y = C(t)x
\]

(8)

where \(B(t) = L(t)B_0 \) and \(C(t) = C(t)L(t) \), and \(C(t) \) is an \(m \times n \) matrix given by the observation equation

\[
y = C(t)x
\]

(9)

Silverman and Meadows\(^3\) show that if \(L \) is nonsingular, the controllability and observability of the system are not lost by the change of state variables given by Eq. (8). The total observability indicates that the state can be determined everywhere dense in \(T_0 \) and any \(t > t_0 \). In duality, assume the influence matrix \(A \) is time-invariant. It thus follows that Eq. (8) is totally observable if and only if the observability matrix \(Q_o \) has rank \(n \) everywhere dense in \((t_0, t_1) \). In duality, the system [Eq. (8)] is totally controllable if and only if the controllability matrix \(Q_c \) has rank \(n \) everywhere dense in \((t_0, t_1) \).

To this end, consider the linear time-varying system with \(L(t) \) being written as

\[
L(t) = \sum_{i=1}^{r} f_i(t)F_i
\]

(12)

where the \(\rho_a(t) \) are scalar-valued functions of \(t \). If there is a number \(m \) such that \(J^a F_{\beta} b_i (\alpha = 0, \ldots, n - 1; \beta = 1, \ldots, r; \gamma = l_1, \ldots, m) \) exists with \(n \) independent vectors \(b_1, b_2, \ldots, b_n \), where we denote \(B \) by

\[
B = [b_1 | b_2 | \ldots | b_m]
\]

with \(b_i (i = 1, \ldots, m) \) being column vectors. By recalling that \(b_i (i = 1, \ldots, n) \) can be considered as a basis of dimension \(n \) space, we therefore obtain

\[
\rho_a(t)J^a F_{\beta} b_i = \sum_{\alpha} a_{\beta \gamma} h_i(t) b_i
\]

(14)

To determine the controllability of the system, it is first noted that

\[
\theta^k(t) = \frac{d^k}{dt^k} [e^{-H} L^{-1}(t) B] = e^{-H} P_k(t)
\]

(15)

as can be shown by simple induction. Since \(e^{-H} \) is nonsingular for all \(t \), the rank of the controllability matrix \(Q_c \) is equal to that of \(W(t) \), which is

\[
W(t) = [\theta^0(t) | \theta^1(t) | \ldots | \theta^{n-1}(t)]
\]

The controllability of the system can thus be determined by the rank test of the matrix \(W(t) \). By using the elementary transformations which do not alter the rank of a matrix, we obtain

\[
\text{rank} \left[\sum_{a=0}^{n-1} \sum_{\beta=1}^{r} \rho_a(t)J^a F_{\beta} b_i \right] \geq \text{rank} \left[\sum_{a=0}^{n-1} \sum_{\gamma=1}^{m} [\rho_a(t)J^a F_{\beta} b_i] \right]
\]

(16)

where

\[
\hat{h}_i = \sum_{a=0}^{n-1} \sum_{\beta=1}^{r} a_{\beta \gamma} h_i
\]

With this background, two theorems can be developed as follows:

Theorem 3: System [Eq. (8)] is totally controllable only if \(J^a F_{\beta} B (\alpha = 0, \ldots, n - 1; \beta = 1, \ldots, r) \) have rank \(n \) and if \(\hat{h}_i(t) \) \((i = 1, \ldots, n)\) are linearly independent.

Proof: By applying the elementary transformations which preserve the rank of a matrix and noting Eq. (16), we obtain

\[
\text{rank} \left[J^a F_{\beta} B \right] \geq \text{rank} \left[W(t) \right] \geq \text{rank} \left[\sum_{a=0}^{n-1} \sum_{\beta=1}^{r} \rho_a(t)J^a F_{\beta} b_i \right]
\]

Evaluation of Mass Properties by Finite Elements

John R. O’Leary*
Tracor, Inc., Austin, Texas

Introduction

WHEN determining the dynamic behavior of a space body a fundamental requirement is the accurate calculation of the body’s mass properties. The usual method for performing this operation is to view the body as an assemblage of small elements for which standard formulas exist, evaluate the mass properties at the element level and recover in total the properties of the body as a whole. As the shape of the body becomes more complicated the accuracy of this calculation may diminish. The method presented herein follows this same basic philosophy differing only in the calculation at the element level, wherein a finite element type analysis is employed.

The application of isoparametric finite elements for the approximation of boundary value problems defined over irregular domains is a standard procedure. Unlike this usual application for finite elements the method presented in this note does not seek the solution of a boundary-value problem but rather the evaluation of some simple integrals defined over the domain.

Analysis

Let \(O \) be the domain and \(x_i, i = 1,2,3 \) be a global coordinate system with basis vectors \(e_i, i = 1,2,3 \). The particular properties of interest are the mass \(M_f \), the first moment mass \(Q \) and the moment of inertia \(I \). When expanded against the basis \(e_i \) these properties take the form

\[
M = \int_{V} \rho \, dx \tag{1a}
\]

\[
Q = \int_{V} x_i e_i \, dx \tag{1b}
\]

\[
I = \int_{V} e_i \otimes e_j \, dx \tag{1c}
\]

where \(\rho \) is the density of the body and \(\delta_{ij} \) is the Kronecker delta; in addition, the usual Cartesian summation convention is used.

The domain \(O \) can be viewed as an assemblage of \(E \) finite elements \(\{E\}_{E=1}^{E} \), two such elements being shown in Fig. 1. The number of nodes on element \(e \) is denoted as \(N_b \); for the elements shown in Fig. 1 \(N_b \) is 8 and 20, respectively. The location of an arbitrary point \(x \) in \(\Omega \) can be interpolated with respect to the known locations of the nodes denoted as \(x_{b_i}^a \), \(a = 1, \ldots, N_b \). This interpolation takes the form

\[
x_i = \sum_{a=1}^{N_b} N_b^a (x) x_{b_i}^a . \tag{2}
\]