Effect of the Mass Center Shift for Force-Free Flexible Spacecraft

Leonard Meirovitch* and Jer-Nang Juang†
Virginia Polytechnic Institute and State University, Blacksburg, Va.

Introduction

As spacecraft increase in size, the weight problem is becoming progressively critical. One way of reducing the weight is to make the structural members as light as possible. But reduced structural weight generally implies reduced stiffness, so that the flexibility becomes an important factor in the spacecraft dynamic characteristics. Indeed, flimsy elastic members undergo large elastic deformations which can have a significant effect on the spacecraft stability and control.

In describing the motion of a spinning spacecraft, it is often convenient to refer the motion to a system of axes with the origin at the spacecraft mass center C. For flexible spacecraft the mass center C generally shifts relative to the nominal undeformed position, so that the system kinetic energy contains terms involving the shifting of C. Quite often these terms complicate the stability analysis appreciably. It is shown in Ref. 2, however, that for a force-free flexible spacecraft of a particular configuration the stability criteria are not affected adversely by ignoring the shifting of C. The question arises naturally as to whether this is true in general. It is the purpose of this paper to address this question and to generalize the results of Ref. 2. Indeed, the paper proves that for the general class of force-free single-spin flexible spacecraft it is possible to ignore the shifting of the mass center relative to the nominal undeformed state without affecting the stability criteria in any significant way. The errors in the stability criteria so derived not only tend to be very small, but they are also on the safe side because such criteria are conservative compared to those obtained by including the shifting of C. The simplification in the stability analysis achieved by ignoring the shifting of C fully justifies the relatively small loss in accuracy.

Stability Analysis

Consider a force-free single-spin flexible spacecraft. Assuming that the orbital motion is known (and can be ignored), it is shown† that the system kinetic energy for motion relative to C can be written in the form

\[T = \frac{1}{2} \omega^T J \omega + K \omega + \frac{1}{2} \int_m \dot{u}_c^T T \dot{u}_c \, dm \]

where \(\omega \) is the body angular velocity, \(J \) is inertia matrix in deformed state, \(K \) is the vector representing the angular momentum due to elastic velocities alone, and \(\dot{u}_c^T \) is the vector of these elastic velocities measured relative to a set of body axes with the origin at C. For a force-free system the potential energy \(V_E \) is due entirely to elastic deformations. Its expression is not affected by the shifting of the mass center. Taking into account the angular momentum integral, we conclude from Ref. 1 that the system is asymptotically stable if the functional

\[\kappa = T_0 + V_E \]

is positive definite, where

\[T_0 = \frac{1}{2} \beta^T \beta \]

in which \(\beta \) is the conserved angular momentum vector.

The term \(T_0 \) involves the shifting \(x_c, y_c, z_c \) of the mass center. Because \(x_c, y_c, \) and \(z_c \) involve integrals of the elastic deformations, they do not represent additional generalized coordinates. Their presence in \(T_0 \), however, complicates the stability analysis appreciably, so that an examination of their role in the analysis is of vital interest. To this end, let us observe that \(J \) can be written in the form

\[J = J_0 - J_e \]

where \(J_e \) is the inertia matrix obtained by ignoring \(x_c, y_c, \) and \(z_c \), and

\[
J_e = m \begin{bmatrix}
0 & 0 & -x_c y_c & -x_c z_c & 0 \\
0 & 0 & -x_c y_c & -x_c z_c & 0 \\
-x_c y_c & -x_c y_c & 0 & 0 & 0 \\
x_c z_c & x_c z_c & 0 & 0 & 0 \\
0 & 0 & -x_c y_c & -x_c z_c & 0 \\
0 & 0 & -x_c y_c & -x_c z_c & 0 \\
x_c z_c & x_c z_c & 0 & 0 & 0 \\
0 & 0 & -x_c y_c & -x_c z_c & 0 \\
0 & 0 & -x_c y_c & -x_c z_c & 0
\end{bmatrix}
\]
in which \(m \) is the total mass of the spacecraft. Whereas matrices \(J \) and \(J_n \) are positive definite, \(J_n \) is only positive. It follows that for any arbitrary vector \(\alpha \), the quadratic forms associated with \(J \) and \(J_n \) satisfy the inequality

\[
\alpha^T J \alpha \leq \alpha^T J_n \alpha
\]

(6)

Using the theorem of the next section, however, we conclude that

\[
\beta^T J^{-\frac{1}{2}} \beta \geq \beta^T J_n^{-\frac{1}{2}} \beta
\]

(7)

Hence, introducing the functional

\[
k_I = \frac{1}{2} \beta^T J_n^{-\frac{1}{2}} \beta + V_{EL}
\]

(8)

and considering inequality, Eq. (7), we can write

\[
\kappa \geq k_I
\]

(9)

so that the system is asymptotically stable if \(k_I \) is positive definite.

The implication of inequality, Eq. (9), is that it is possible to use the testing functional \(k_I \) for stability analysis instead of \(\kappa \). Because \(k_I \) is free of the terms involving the shifting of \(C \), the stability analysis can be simplified considerably by using \(k_I \) as a testing functional instead of \(\kappa \). The conclusion is valid irrespective of the magnitude of \(\chi_c \), \(\chi_y \), \(\chi_z \). Of course, when \(\chi_c \), \(\chi_y \), \(\chi_z \), and \(\kappa \) are large the stability criteria derived by using \(k_I \) as a testing functional instead of \(\kappa \) can be unduly restrictive. In most practical cases, however, \(\chi_c \), \(\chi_y \), and \(\chi_z \) are one or two orders of magnitude smaller than the elastic displacements themselves, in which case no accuracy is sacrificed by using \(k_I \) instead of \(\kappa \).

A Theorem on Inequalities for Quadratic Forms

The simplification of the stability analysis resulting from the use of the testing functional \(k_I \) instead of \(\kappa \) was based on the fact that if matrices \(J \) and \(J_n \) are such that inequality (6) is satisfied then matrices \(J^{-\frac{1}{2}} \) and \(J_n^{-\frac{1}{2}} \) satisfy inequality (7). Of course, matrices \(J \) and \(J_n \) do satisfy inequality (6), but it remains for us to prove that inequality (7) follows from inequality (6). Consider the following:

Theorem

Given two \(n \times n \) matrices \(A \) and \(B \) which are symmetric and positive definite over the real number field \(R \). If \(x^TAx \geq x^TBx \) for any \(n \)-vector \(x \) over \(R \), then \(x^TA^{-\frac{1}{2}}x \leq x^TB^{-\frac{1}{2}}x \).

Proof:

Because \(A \) is symmetric and positive definite, there is an orthonormal matrix \(U \) such that

\[
A^{-\frac{1}{2}} = U \lambda U^T
\]

(10)

where \(\lambda \) is a diagonal matrix with its elements equal to the eigenvalues of the matrix \(A \). The effect of the operation

\[
C = A^{-\frac{1}{2}}BA^{-\frac{1}{2}}
\]

(11)

is to transform the symmetric and positive definite matrix \(B \) into a matrix \(C \) which is also symmetric and positive definite, i.e.

\[
C^T = (A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^T = A^{-\frac{1}{2}}B^TA^{-\frac{1}{2}} = A^{-\frac{1}{2}}BA^{-\frac{1}{2}} = C
\]

(12)

Similarly, there exists an orthonormal matrix \(V \) such that

\[
V^TCV = V^TA^{-\frac{1}{2}}BA^{-\frac{1}{2}}V = \mu
\]

(13)

where \(\mu \) is a diagonal matrix.

Introducing the linear transformation

\[
p = V^TA^{-\frac{1}{2}}x
\]

(14)

into the inequality \(x^T Ax \geq x^T Bx \), where \(p \) is an \(n \)-vector, we obtain

\[
p^T V^TA^{-\frac{1}{2}}A^{-\frac{1}{2}}BP \geq p^T V^TA^{-\frac{1}{2}}BA^{-\frac{1}{2}}BP
\]

(15)

which reduces to

\[
p^T Ip \geq p^T \mu p
\]

(16)

where \(I \) is the identity matrix. Because \(A \) and \(B \) are positive definite, all the elements of the diagonal matrix \(\mu \) are positive. It follows from inequality (16) that

\[
p^TIp \geq p^T Ip
\]

(17)

Moreover, recalling inequalities (15) and (16), it follows that

\[
p^T V^TA^{-\frac{1}{2}}A^{-\frac{1}{2}}BP \geq p^T V^TA^{-\frac{1}{2}}B^{-\frac{1}{2}}BP
\]

(18)

Next, let

\[
y = A^{-\frac{1}{2}}B^{-\frac{1}{2}}x = A x
\]

(19)

so that inequality (18) reduces to

\[
y^TA^{-\frac{1}{2}}y \leq y^TB^{-\frac{1}{2}}y
\]

(20)

Because \(A \) is symmetric and positive definite, we can show that \(A \) can be regarded as a linear transformation mapping the linear space into itself. This concludes the proof that \(x^TA^{-\frac{1}{2}}x \leq x^TB^{-\frac{1}{2}}x \).

Conclusions

Considerable simplification of the stability analysis for flexible spacecraft can be achieved by ignoring the shifting of the spacecraft mass center relative to the nominal undeformed position. The resulting stability criteria are conservative compared with those obtained by including the shifting of the mass center, but in most practical cases the loss of accuracy is insignificant. To demonstrate the validity of the analysis, a new theorem on inequalities for quadratic forms is advanced and a proof of the theorem is provided.

References

Nonequilibrium Nozzle Flow of a Nitrogen-Hydrogen Mixture

B. P. Edwards* and R. J. Stalker†

Australian National University, Canberra, Australia

The high enthalpy nozzle flow of a nitrogen-hydrogen mixture is of interest from two points of view. First, received April 28, 1975; revision received August 1, 1975.

Index categories: Nozzle and Channel Flow; Reactive Flows; Thermochemistry and Chemical Kinetics.

*Honors Undergraduate in Physics.

†Reader in Physics. Member AIAA.