LINEARIZED ORBIT COVARIANCE GENERATION AND PROPAGATION ANALYSIS VIA SIMPLE MONTE CARLO SIMULATIONS

Chris Sabol, Paul Schumacher
AFRL

Thomas Sukut
USAFA

Keric Hill
PDS

Brendan Wright
You Li
USMA

Terry Alfriend
Texas A&M
Introduction

- Realistic orbit error distributions can be used to drive a variety of space surveillance applications
 - Track association
 - Probability of collision calculations
 - Sensor tasking
- Many current approaches assume a Gaussian orbit error distribution represented by the covariance
 - Linearized dynamics used for propagation
- Are these approaches fundamentally flawed?
Small Step in Study of Covariance Realism

- Lots of reasons why covariance may not be realistic
 - Insufficiently modeled dynamics
 - Nonlinearities
 - Unmodeled accelerations
 - Poorly modeled observation errors
 - Non-Gaussian
 - Autocorrelated
- This research focused on the validity of linearized covariance propagation
 - Can we use \(P(t) = \phi P_0 \phi^T \) ?
Research Focused on Linearized Covariance Generation and Propagation

- Orbit error distribution should be Gaussian if
 - Obs errors are independent, zero mean, Gaussian
 - Dynamics are well represented
- This analysis enforces these assumptions in simulations to study impact of
 - Linearized dynamics
 - State representations
- What’s new?
 - Distinction of dynamic and coordinate linearization
 - Assessing practice of comparing covariance values to sample statistics (std deviations)
Simple Monte Carlo Simulations to Assess Covariance

- 1000 estimated orbits provides error distribution and k statistics

\[k^2 = \delta X^T(t) P^{-1}(t) \delta X(t) \]

- Representative covariance results in k distribution that matches theoretical Gaussian distribution

- k should be constant in time under ideal conditions
Simulations Reflect LEO Space Surveillance Scenarios

- Single 2 minute radar pass scenario
 - Obs every 10 seconds, 30 m range noise, 36” az&el noise
 - ~100m of error at epoch and ~130km/day error growth
- Catalog-class scenario
 - Six passes of observation data to produce errors similar to observed catalog values
 - O[10m] of error at epoch and ~60m/day error growth

- 7000 km semimajor axis, near circular orbit
- Results generated in Cartesian, equinoctial, and curvilinear
 - DSST used for native equinoctial element formulation
- Perfect dynamic modeling, unbiased data with Gaussian noise
Sample k distribution curves lie on top of each other
Catalog-Class Scenario: Cartesian Representation
Non-Gaussian after Few Days

- Is it nonlinear dynamics, linear comparison frame, or numerical issues?
Catalog-Class Scenario: Cartesian to Equincotial Element Transformation Matches Gaussian

- Used linear Jacobian transformation to convert Cartesian covariance to element space at comparison time
 - Still propagating in Cartesian space

- Linearization of Cartesian dynamics not the issue!
- Must be linear coordinate comparison frame issue
Catalog-Class Scenario: Cartesian Covariance Appears to Match Sample Statistics

- Poor measure?

- Same level of agreement in element case
Catalog-Class Scenario Summary

- Linearization of dynamics not a bad assumption
- Error distribution does not remain Gaussian in Cartesian reference frame
 - Transformation into element space mitigates issue
- Comparing covariance values to sample statistics (std deviations) does not appear to be a good measure
2-Minute Radar Pass: Cartesian Error Distribution
Non-Gaussian in Minutes!

- Covariance values still match sample statistics
2-Minute Radar Pass: Cartesian to Equincotial Element Transformation Much Improved

- Used linear Jacobian transformation to convert Cartesian covariance to element space at comparison time

- Nonlinearities drive non-Gaussian distribution after 1 day
- Numerical issues after Day 4
2-Minute Radar Pass: Equinoctial Element Error Distribution Non-Gaussian After 1 Day!

- Covariance values still match sample statistics through 10 days
- Condition number and inversion residuals look fine
- Better performance than Cartesian-to-Equinoctial after Day 3
 - Appears to be some advantage in element-based dynamics
Short Data Arcs Demonstrate Need for Nonlinearity Index or Nonlinear Techniques

• Equinoctial element results with various fit spans (10s/obs triplet)

 ![Graph](image)

 - Distribution remains mostly Gaussian and represented by covariance at epoch
 - Time it takes to go non-Gaussian sensitive to data spans and likely accuracy
Curvilinear coordinates are based on Cartesian but curve to follow the shape of the orbit.

Curvilinear \(k \) values are computed using 3x3 position + 3x3 velocity covariance.

- No position-velocity cross-correlation terms.
Two Minute Radar Pass Scenario Summary

- Nonlinear dynamics drive error distribution to be non-Gaussian in minutes to days
 - Using $P(t) = \phi P_0 \phi^T$ can be problematic
 - Recommend the use of nonlinear techniques or at least use of nonlinearity index prior to $P(t) = \phi P_0 \phi^T$

- Epoch error distributions appear to remain Gaussian and represented by covariance

- Setting some cross-correlation terms to zero when computing k results in more consistent k distributions
Conclusions

• Error distribution does not remain Gaussian in Cartesian reference frame

• For catalog-class errors, linearization of dynamics is not a bad assumption

• For short radar track, nonlinear dynamics drive error distribution to be non-Gaussian in minutes to days
 – Linearly propagated covariance matrix may not be sufficient to represent orbit error distribution

• Comparing covariance values to sample statistics (std deviations) does not appear to be a good measure
Catalog-Class Scenario: Numerical Stability Doesn’t Appear to be Primary Issue

- 64 bit Cartesian covariance inversion precision issue after day 4
 - k distribution moved away from Gaussian around day 3
- Element formulations are well behaved
Curvilinear Coordinates

- Created by Keric Hill, AIAA 2008-7211, AIAA/AAS Astrodynamics Specialist Conference, Honolulu, HI, Aug 2008
Elements with No Eccentricity-Mean Longitude Cross-Correlation Terms Very Consistent

- Propagating full element covariance
- Set h-λ and k-λ correlation terms to zero when computing k values

Not useful for all applications but may be powerful approach for track association