Motivation
- Metal in aerospace structures are being replaced with composites. Why not the same for houses?
- A proposed design of a composite house cannot be structurally analyzed due to problems implementing multifunctional features called fiber elements

Objective
- Develop a method to implement the fiber elements
- Perform Finite Element Analysis on multifunctional structure

Preparing Model for Analysis
- Applied Loads: Gravity, Vertical Wind, Lateral Wind, Snow
- Material Properties/Composite Layup: Used properties of E-glass/Epoxy Composite with 8-Harness Satin Weave
- Lamina Orientation: 0°/45°
- Assume Quasi-isotropy due to orientation

Implementation of Fiber Elements
- Process for Developing Method
 1. Create and tie wires on a flat plate
 2. Create and tie wires on a curved plate
 3. Create a code that would create a wire and tie it to a surface

The code reads in points from a text file and then uses those points to create wire features, apply material properties and a mesh, and ties the wire to the specified surface.

Parametric Studies
- Wind Loads: Vertical Wind, Lateral Wind
- Thickness of Composite

Experimental Verification
- Fabricate and Prepare Composites Specimens
- Perform Tension and Bending Tests on Specimens
- Use average Young’s Modulus obtained from tension tests
- Calibrate Longitudinal and Transverse Young’s Modulus using data from tension tests
- Compare analytical results of 3-point bending in Abaqus to experimental results

Summary/Conclusions:
- Created finite element analysis model for design
- Successfully performed analysis of the model without fiber elements
- Code was created that implements fiber elements into design
- Performed initial analysis on model with fiber elements
- Created and tested composite specimens
- Assumption for quasi-isotropy disproven by experimental data
- Next Step: Implement actual fiber elements from design

Acknowledgements: Thanks to Kevin Maxwell for the assistance in Abaqus and Python. Antony Zacharatos assisted in the tension and bending tests. “The Ranch” at Riverside Campus assisted in the fabrication of composites.