Enveloping surface of trajectory family of isotropically ejected particles due to a satellite explosion

K.V.Kholshevnikov, S.A.Orlov
Astronomical Institute of St.Petersburg University,
St.Petersburg,Petrodvorez, Universitetsky pr. 28, 198504 RUSSIA
kvk@astro.spbu.ru

Introduction

An artificial satellite explosion leads to ejection into space of a mass of particles. Typical velocities of ejecta are of the order of km/s or less, so they remain on geocentric orbits, T, close to the supposedly circular orbit of the satellite. The emerged swarm fills out a domain, D, swept by family $\{T\}$. We are interested in the structure of the domain, D, corresponding to the largest possible family $\{T\}$. It leads to an assumption of all-directed ejecta. From imaging we observe an isotropic ejection with all possible velocities lower in absolute value than b. Due to the inequality of orbital periods, fragments will densely fill the domain, D, in a short period of time (few days; a more precise value depends on b and on the altitude of the satellite orbit). To get the boundary S of D, it is sufficient to suppose the velocities equal to b. So D represents a debris complex emerging in a few days after the burst. In a few months D diffuses due to nodes’ and pericentres’ motion in the gravity field of an oblate planet, resulting in an axisymmetrical figure D' with the boundary S'. Here, we obtain parametric equations of S, and examine its properties. Topologically S is a torus with one conic point and one rectilinear constriction. We intend to do similar work with S' later.

1 Trajectories family

The above mechanism is similar to one of a dust belt formation by meteoroid impacts, that was first suggested by S. Soter [1] and was described in papers [2,3]. So we may use formulae for orbits, T, obtained there. Let a point, O_1, having a negligible mass describe a Keplerian circumference around a point, O, of mass, m. At a moment, t_0, an isotropic ejection from O_1 takes place. Particles possessing infinitely small masses move in all directions with the same velocity $b>0$ relative to O_1. Let us find the enveloping surface, S, of a 2-parametric family of ellipses $\{T\}$ describing these particles. Suppose that O_1 and the thrown particles describe conic sections corresponding to the gravitational parameter ae^2, equal to the product of the gravitational constant and m. Let R be the radius of the circular orbit O_1 relative to O; $w = \sqrt{\frac{2}{R}}$ be the circular velocity of O_1, $c=b/w$. Confining ourselves to ellipses, we assume

$$w + b < \sqrt{\frac{2}{R}} \iff b < \sqrt{\frac{2}{R}} - 1 \iff c < \sqrt{2} - 1. \quad (1)$$
The condition of the absence of rectilinear and retrograde motions is less restrictive

\[b < w \iff c < 1. \]

(2)

Let us introduce a system of non-rotating Cartesian coordinates centered in \(O \); \(x \) – axis directed to \(O_1 \) at a moment of ejection, \(y \) – axis lying in the orbital plane in the direction of motion, \(z \)-axis coinciding with area-vector of \(O_1 \) orbit. Designate \(b, \theta, \lambda \) spherical coordinates of the velocity vector of a particle \(Q \) relative to \(O_1 \).

Assume velocity modulus \(b > 0 \) fixed, point \((\theta, \lambda) \) belonging to a unit sphere \(\Sigma \). At the initial epoch the position and velocity of an ejected particle, \(Q \), chosen by two parameters \(\theta \) and \(\lambda \), are

\[r_0 = (R, 0, 0), \quad v_0 = (b \sin \theta \cos \lambda, w + b \sin \theta \sin \lambda, b \cos \theta). \]

(3)

Knowing the position and velocity, we easily find the orbit, \(T \), of the point, \(Q \) [4].

Supposing \(R = 1 \) (one can easily restore the scale factor, if needed), we obtain

\[p = A^2, \quad \Omega = 0 \]

(4)

\[\cos i = \frac{1 + c \sin \theta \sin \lambda}{A}, \quad \sin i = . \]

(5)

\[e \cos g = A^2 - 1, \quad e \sin g = -Ac \sin \theta \cos \lambda, \]

(6)

\(p, \Omega, i, e, g \) being the parameter, longitude of ascending node, inclination, eccentricity and argument of pericenter, respectively,

\[A^2 = (1 + c \sin \theta \sin \lambda)^2 + c^2 \cos^2 \theta > 0. \]

(7)

For the sake of continuity we suppose \(-\frac{\pi}{2} \leq i \leq \frac{\pi}{2} \). Underline that all motions are prograde, \(i < 0 \) means that longitude refers to the descending node. Under the condition (2) it is easy to see that

\[1 - c \leq A \leq 1 + c. \]

(8)

An important role is played by orbits of extreme inclination, \(i_{\text{extr}} = \pm \arcsin c \), corresponding to

\[\lambda = -\pi/2, \quad \theta = \arcsin c \quad \text{and} \quad \theta = \pi - \arcsin c, \]

(9)

in both cases \(A = \sqrt{1 - c^2} \). Ultimately, position vector of \(Q \) is determined by the formulae

\[r = r (\cos u, \cos i \sin u, \sin i \sin u), \quad r = \frac{A^2}{1 + \alpha \cos u + \beta \sin u}, \]

(10)

with \(\alpha = A^2 - 1, \quad \beta = -Ac \sin \theta \cos \lambda \). Note that \(A, i \) are expressed by \(\theta, \lambda \) according to (7,5). For extreme inclination orbits we have, as an example

\[r = \frac{1 - c^2}{1 - c^2 \cos u} (\cos u, \sqrt{1 - c^2} \sin u, \pm c \sin u). \]
2 Enveloping surface

Relations (10) represent equations of a curve T (ellipse) parametrized by a variable $u \in [0, 2\pi]$. A family $\{T\}$ is a union of any T marked by two parameters θ, λ running a unit sphere $\Sigma: \theta \in [0, \pi], \lambda \in [0, 2\pi]$. Parametric equations of the enveloping family $\{T\}$ of surface S are given [5] by relations (10) and

$$\Phi(u, \theta, \lambda) = 0,$$

with

$$\Phi \left(\frac{\partial r}{\partial u}, \theta, \lambda \right) = 0.$$

Equation (11) determines u as an implicit function of θ, λ. We succeeded in resolving it and finding an explicit function $u = F(\theta, \lambda)$. Substitution of $F(\theta, \lambda)$ instead of u in (10) leads to the desired parametric equations of S. Direct calculations (better to use tools of computer algebra, "Mathematica", for example) give:

$$\Phi = \frac{2c^2r^4}{A^4} \sin \theta \sin u \sin \frac{u}{2} \Phi_1,$$

with

$$\Phi_1 = A(\sin \theta \sin \lambda + c) \cos \frac{u}{2} - 2 \sin \theta \cos \lambda \sin \frac{u}{2}.$$

The first factor on the right-hand-side of (13) is bounded above and away from zero. The second one is due to the singularity of spherical coordinates at $\sin \theta = 0$. It disappears, after transition to non-singular, in the vicinity of the poles of the coordinates, such as $(\sin \theta \cos \lambda, \sin \theta \sin \lambda)$. Double root $u = 0$ of the equation (11) corresponds to a conic point $(1, 0, 0)$ of the surface, S: all orbits, T, pass through the point of ejection. The root $u = \pi$ corresponds to a constriction

$$\frac{1 + 2c + c^2}{1 - 2c - c^2} \leq x \leq \frac{1 - 2c + c^2}{1 + 2c - c^2}, \quad y = 0, \quad z = 0$$

of the surface, S: all orbits, T, pass through the line of nodes. In the vicinity of the constriction, S has the topology of a cylinder, $x^2 + y^2 = 1$, on the directrix, of which points $(x, y, 0)$ and $(x, -y, 0)$ are identified. Function Φ_1 is a trigonometric polynomial of first degree with respect to u. Its coefficients vanish together at two points (9) of the sphere Σ. That means that both orbits of extreme inclination belong to Σ entirely. In all other cases the equation (11) is equivalent to

$$\operatorname{tg} \frac{u}{2} = \frac{A \sin \theta \sin \lambda + c}{2 \sin \theta \cos \lambda},$$

with
from which we determine uniquely the cosine and sine u

$$\begin{align*}
\cos u &= \frac{4\sin^2 \theta \cos^2 \lambda - A^2 (\sin \theta \sin \lambda + c)^2}{4\sin^2 \theta \cos^2 \lambda + A^2 (\sin \theta \sin \lambda + c)^2}, \\
\sin u &= \frac{4 A \sin \theta \cos \lambda (\sin \theta \sin \lambda + c)}{4\sin^2 \theta \cos^2 \lambda + A^2 (\sin \theta \sin \lambda + c)^2}.
\end{align*}
$$

(16)

Draw the final parametric equations of the enveloping surface S

$$x = \frac{h_1}{h}, \quad y = \frac{h_2}{h}, \quad z = \frac{h_3}{h},$$

(17)

with

$$
\begin{align*}
h_1 &= 4 \sin^2 \theta \cos^2 \lambda - A^2 (\sin \theta \sin \lambda + c)^2, \\
h_2 &= 4 \sin \theta \cos \lambda (\sin \theta \sin \lambda + c)(1 + c \sin \theta \sin \lambda), \\
h_3 &= 4 c \cos \theta \sin \theta \cos \lambda (\sin \theta \sin \lambda + c), \\
h &= (2 - A^2)(\sin \theta \sin \lambda + c)^2 + 4 \sin^2 \theta \cos^2 \lambda (1 - c \sin \theta \sin \lambda - c^2).
\end{align*}
$$

Substitution $(\theta, \lambda) \mapsto (\pi - \theta, \lambda) \mapsto (\pi - \theta, \pi - \lambda)$ shows symmetry of S with respect to planes xy and xz. Conic point $(1,0,0)$ corresponds to a curve $\sin \theta \sin \lambda + c = 0$ on the sphere of parameters. Constriction (15) corresponds to a curve $\sin \theta \cos \lambda = 0$.

3 Conclusion

Surface S is examined completely. It represents a topological torus with one point-like constriction and one segment-like constriction. Vicinities of the constrictions are shown on figures 3 - 6. Image of the surface S is placed on fig. 7 ($c=0.05$) and 8 ($c=0.25$). The geometry of ejection and the sphere of parameters are represented on figures 1 and 2.

References